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Final Technical Report)

Contract # DAAH0I-71-C-1476

November ZO, 197Z

The following report is a summary of work performed under the

above contract relating to means of obtaining higher power output from

CY GCO, lasers.

As Do. per Broadening

In an effort to study the effect of higher order transverse and

longitudinal mode excitation on single mode power output from a COZ

laser, Lax, Louisell and McKnight(') [LLM] have shown that for a

homogeneously broadened laser the fundamental mode, through non-

linearities, will excite higher order modes. This means that atoms

which would normally supply energy to the fundamental mode are

nwasted. It was therefore thought to be of interest to study the effect

of Doppler broadening to see if the molecular motion could aid in

suppressing higher order modes.

The problem of solving the coupled equations of motion for the

atomic inversion, atomic polarization, and the amplitudes of the

various excited transverse modes for atoms having a Maxwell-Boltzmui

velocity distribution is very difficult. The usual technique oi Fourier

analyzing the variables in time harmoni:v works if the atoms are

ei~her 1) motionless, or Z) moving through a spatially harmonic field

(i. e., moving in the z direction through purely longitudinal miodes).

Tle techniq•.Le does not work for atoms moving through ihe Hermite-

Gaussian fields of tha •Udtt•verse Mo k f spherical resonators,

(1) . Lax, W.H. Lrouiacll and WB. McKraight, Jour, App. Phys.,

•~ ~~S V50 t11272 •••• ••• • ).••
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Th,.. lasers of interest at Redstone Arsenal, however, are of

fairly bigh pressure and it is easy to show that for pressures on the

ordar of 70 torr (10 dynes/crV), the mean free path for any molecule

is small compared to the wavelength of the laser radiation (10.61J).

The mean free path io

£ I 1 kT

where %o= rd is the cross section foe scattering. At room tempera-

ture and 76 Lorr, we have
(1. 4 Y 10-16} __3 x 10 2Z 4 0- m

TZ x 10 5 x V x (2 x 10"

The wavelength of the laser radiation is

X a = 10.6P i- 0 x 10- 4 cm.

Therefore, at a pressure of 76 torr, the CO, molecules cannot move

more than a wavelength before a phase-interrupting collision occurs.

Hence, we may use the theory of Lax, Louisell and Mclnright for"

homogereously broadened lasers for those CO2 lasers of ir,.erest

at Redstone Arsenal sia:ze Doppler broadening will not assist in getting

higher power output by supplying additional atoms to the funda-',-ental

mnode region.

The homogeneous theory of LLM gave a criterion for euppressing

higher order transverse modes. It showed that large fundamental

mode volurnes are desirable. Siegman and coworkers have been

studying diverging mnirrors to achieve this goal. However, these lead

to undesirably 1arge diffraction losses. As a compromise, we have

btuli(ed mirrorb which have diverging spherical mirrors in the central

region of the beam surrounded by coniverging spherical mirrors. We

eypected that the fundamental mode volarne would be increased by the

diverging central part of the irnirrois while the diffraction loszes

1 ' ,



would be reduced by the converging rims c; ti~e mirrors, The

international Quantum Flectronics Meeting in Montreal in May. The

compu~ter programt now works well and a copy o~f the program has

been sent to Dr. W. McKnight at Redstone Arsenal for any further

geomc~rie!- that need be studied. Dr. McKnight is in the process of

checki:~g the theory experimentally.

C. Two Mode Problem.

To obtain a feel for how the power output of a miultimode laser

might compare to that of a single mode laser, we have aLtenipted a

sttidy of a two mode laser. (Both modes are transverse micdes, ) We

have been rathei busy preparing the resonator paper for publication

so that not too much. progress has been mnade on tbe two mode problem.

We have, however, been able to dleri~re the coupled equations of motion

for the amplitudes of the two modes, but we have esueritially been

limited by the comple::ity of the integrals obtained.

For tbc analysis of the two mode problcrn, we have proceccied

along the lines of ihe (LLM) paper, only we have included two modes

rather tha- one. V!,- begin with their coupled equationb of motion for

the amiplitude o.f aniy mode 1, and the inversion In the laser medium,

DM94

+s 1io b~* - (1,) D(1
h.'n, +1W-~.)~ ~ (r) Urn(r) I i P dM
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D~ ~ 13 7 f 7 b' + c. c.] (2)
ot

DMFW-F [~ ~ I!

Here, b'., AS y and U, are the amplitude, cold cavity resonant

frequency, loss due to diffraction and other loss mechanisms, and

spatial distribution of the transverse mode f , respectively, and

each mode has taken on a factor p., the atomic dipole moment, for

simplicity. DM is the time and space dependent atomic inversion in

0%. cavity and DW is the steady state, space indeper.dent inversion in

the absence of any field. The operators,

d

and

P d •-= r+ iw +d-

operate on all vari.ables to their right. The o:-iginal equations included

another equation for the polarization in the medium, and the operators

(3) appear in (1) and (2) because the polarization has been eliminated

f"rom te equations, In (3), r. and P7 are the decay constants for tIle

upper and lower atoyric ir molecular states a and b in Figure 1 a W

is Lhe resonant frequency and r is the decpo constant for the Polariza-

tioai. Ir. (1) and (?), the sums m and n are over ail oscillating modes

and the fsvm M is over all the atoms or molccules in the cavity and

wilAl ultimately be replaced by a volume integral.

We make the swibtit-tion& (4) into (1) ';nd (Z),

D .-- M ibteAt
DM D •, e (4)

6 s



where vA is now some frequency other than the cold cavity frequency

of mode A, and b its slowly varying mode amplitude. Here, A = %'vi

and "D depends only on position. In (he equations resulting froin

substitution of (4) into (1) and (2), we match time harmonics and obtain

the equations of motion for the amplitudes of the two oscillating modes

and the amrlittides of the harmonics of the inversion, (all other modes

have zero amplit.ide.)
Sb 2 M + M

I " - o u2 U1 b.I0 1 (5'

F*+ I L 2' PZ f IZ 17- bz DM + -V b, D-]
M

IA ~b -2D M 1 -U' I*l ,()+1 U2 121b2b AZZ ((6)

M '• + M * +ITII '12N ~ - U2UIb2bI 28)
-D U t blU2 b2b AlZ) Do (U-)UpA 2 1 ) (8)

1)M DM 1~iZb,1~i I N IU7 ?- lb? I' A7

-D (Ul Uob1 +bZA 12 ) DM 7Ulbz bVl1 (9)

where, 11+i
Aij(.) ,- r ) 1 P( - iy) + P "'(i 6 + No )

and i .,2. (IV1

Tie st (7) (9) may be solved by perturbation theory assuming,

D M _M> M
DwDo >D + Z etc.

and vj- ohtain, D

0 ~ ~ ~ r 1 L111-J'",1%L
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[z , z (+ a 1bl, lJAzz(0+
S(13)

.M-D U' Ua bz+ A f(-1)

"heni (13) in (5) •ields,

- 1 2 l( 'Dli A

+ Fl lI A3.(O) + tl?

1 b 2 1 W '!i'21~

p(ij 1
A A(15)

I J:-~or W.he anvmi1,-de of mode I and we obtain a similar expression fcr Olie

-*mpliturle of mode Z by subsritution of (13) into (6). ( )m-ans average over

.he entire laser volume. .jh steady state number of photons in mode I

is then given by

1 lIZ -, 1( , I •i (u) 11 U- I'-z lIbz bA..(C)
I-)t , 1141 , " 0 )

i--",Q [H.+jri~ ~'* IbL-A 1 1 (0tlu 2 I A, 2 (O) 0po'[4 -,TiJ lb, "A n(1) lb2.

.5 'ith a similar e:,pres,ýion for the steady state number of pholons in mode

. Sirmilar expressions t: (15) and (16)rn:ay be written for the frequencies

Af two modus, ex.-ept that they iwnvolve -he imaginarv part of the same

ex:pression.

in nrirr to conrn.pre the steady state number of photons 4n the

!-.vo modes., it will he necessary to evaluate 4he spatial ir.tegrations

.:ver the ' cr.'-od(.- U, and U, as denoted by the brackeis ( ). 'hi.s &

F '' 7



where we ran into insurrmnolntable eliffa ulties in evalhating the

copnilicated expressions. Some rcmarkb about Lh- "results" (15) and

(16) are in order however.

3) If 1bil 2 and 1b, 2 are taken to be approximately constant, and the

spatial integrations in (15) taken to be a constant, then (15) reduces to,

Y,
+ (A- + i ) b -0 (17)

where 4•s- definition of A is obvious but complieated. Equation %i7) has

the solution,

bl=b° exp (Re A - It + i((l% Im Alt (18)

Now, bI will be stable (i. e. not grow or decay exponentially) if,

• YIY-- =_ReA

r'his littft argument is evidenily the source of (16) u;i u.es the

reasoninp of (LLM).

7) The saturation tWrr.s come in as expected. In (LLM), for a single

modc,

Yl I

and hero w'e havc,

Sa term like T(
1 i y1b?

another term It tz
- 8ke

| ~ ~ ~ ~ ~ -l() InU?~l Immtm onflu.nng ..



Tero 'a) is like a total saturation term and (b) is like a cross

saturation term for the effect of mode Z on mode I.

3) It seemns strange to us that the steady state number of photons in

mode I is defined in terms of the intensities 1h,12 and 1,217 of )oth

11,modes.

pro

I%
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Fig, l_ Simple Iaser Atomic or Molecular Mcodel
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TRANSVERSE MODE SUPPRESSION USING

RIMED UNSTABLE RESONATORS

by

M. Lax
City College of New York

New York, New York 10031

C. E. Greninger and W. H. Louisell

Departments of Physics and Electrical Engineering

University of Southern California

Los Angeles, California 90007

and

W. B. Mcdnight

U.S. Army Missile Command

Redstone Arsenal, Alabama 35809

ABSTRACT

We show that the criterion for single transverse mode laser

operation can be reduced to the criterion that the intensity of the fun-

damental mode be greater than some constant in the entire laser

volume. We also obtain amplitude and phase distributions for low loss,

edge rinrizred unstable resonators for Fresnel number up to eight.

The resonators with the most uniform amplitude distributions are

the most likely to suppress higher order traneverse modes.

1,



TRANSVERSE MOIJE SUPPRESSION USING

RIMMED UNSTABLE RESONATORS

I. Introduction

There has been much interest in obtaining a high-power, high

Fresnel number laser that will operate in the single lowest order transverse

mode. In general, lasers will operate in numerous transverse modes

simultaneously, or they will oscillate in a E-gh order transverse mode.

There have been a number of attempts to force the laser to oscillate in the

lowest transverse mode. BirchI and Skinner and Geusic2 have suggested

the cats-eye-pinhole arrangement that spreads out the volume of the funda-

mental mode. In this way. the fundamental mode saturates out more of the

atoms so ha few atoms remain to excite the higher order modes. At high

powers, however, it has been found that it is easy to destroy the pinhole. 2

It it therefore preferable to use no intra-cavity optics or apertures.

Siegrnan and Arrathoon3 have studied unstable resonators in an

attempt to spread out the mode volume of the fundamental mode and thu.

"discriminate" against higher transverse modes. The discrimiz:ation is

based on the relative losses of the various modes and Siegman founrd t.he

diffraction losses of even the fundamental mode to be quite hiEh. Hence,

it is possible to operate in a single transverse mode if high diffraction

.o4:.es and high beam divergence can be tolerated.

Recently, Lax, Louisell, .•nd McKnight4 (LLM)'have written down

the coupled equations of motion for the mode amplitudes of a laser osciliating

in '." nua-Iber of .,' , - and they have found a criterion for any

-I- 1 13
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higher order mode either to be quenched or driven into .icillation by a

single strongly oscillating lowest order mode. They have evaluated this

criterion for a confical resotor and fouad that numerous higher i's odes

would be driven into oscillationby the single lowest order mode.

In this paper, we show that the (LLM) criterion for the ocillat.o.,

of only te fundamental mode may be reduced to the single critericA that

the intensity distri.bution of the fundamental mode be greater than some

constant over the entire laser volcmi.e. We Ohen investigate die mode

structure of unstable resonators with rims in order that me might obtain the

low diffraction loss mode distribution that best s.4isfies this criterion, at

le~t cu tbe mirror surfaces. The tmstable part of the r---sonator spresds

out the mode volu-.e, while the rims help to keep the energy from spilling

out of the resonator.

It is found tat by varying the resonator configuratiwn one can find

favorab!e intensity distribations at airly low toss for Fresnel numbers fraom 2

to 8. 6. It is also found that unless one is rather careful, he can easily

force inierior zeros in the intensity distribution across the mirrors. The

appesA-;,ce of zeros in the mirror intensity distribution becomes more

&ensitive to changes in mirror configuration at higher- Fresnel number.

I1. ,yLcia1 Case of (LIM) and the Rimmed Unstable Rpsonators

The analysis of (L.M) shows that a single oscillating fundarnentaI

mode %ill quenc1h any other transve.- zj,,.2: if tbl' quotient Q satisfies

- 14
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I'm 17-D
A1 (1)

,5 I% IZD >

where TE., Yand Se u, 5 are the losses and spatial disizibuions of the

stroagly oscillating fuundamental mode E and any other higher order mode A,

respectively. D is the pump distributoun and
U

SKf0) = 1 +Su1IZ

where S is a saturation factor that depends on the intetsity of mode E and

how cioie its frequency is to atomic resomnace

z 2r Ib:i

r(o) (vf-O ( 0)Z

Here, pa is.the atomic dipole moment, b. is the amplitude of mode E and

VF is its frequency, *o is the atomic resonance frequency and r(o) is a

ii comnbisiation oi atomic decay constants. < > means integration over Lhe

volume of the ;%vtive mediutm. (LLM) have evaluated (1) for a confcal

reconator and have found that mode E would cause nnnmeropis highCr order

transverse mncdes to break into oscillation.

Without specifying the functional dependences of uE and u, on r, it

is possible to reduce (1) to a simple expression. If M = max IuEIZ and

C ""- [ I U Lhen (1) becomes

£1
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"here we mbare takca 'Z a"d D to be dpeamdet of posionii. now,

(2) wil be satisfied if

C =min' a1> s*me co•atant (3)

ov r the entire laser volume.

Equation j3) is a quantitative statement o the Motion that One must

spreud out the m-ode volume of the siunle oscillating fundamental made in

order tflat it saturate the whole laser medium and leave t-o gain far the other

modes.

In urdcr to satisiy the criterion (3;, at least over the mirrors, and also

keep the diffrictioa losses to a minimum, we hive investigated numerically

the eigervalues and eigcnmodes of the type of resonator shown in Figure 1.

The ;.mp:[tude di.:lribtimon that best satisfies (3) and keeps the diffraction

laeses to a t.ivirtu.- will be the one Lhat is most uniform across m,.ost of the

mirror a.:d It.en. fdl, 'apidly to zero near the mirror edge.

MT. jvvtt.gra F~qttions

The rcsona Lor in Figure I is equi.valent to an infinite lens system, a

part .f vrhich it; s•hwn in Figure 2. The complex amplitude distribations

it (r) are de&ined in the plane immediately preceeding each lens. Thc

di.trib,:tir, in front of lens nil that arieas from the distribution in •rcnt of
-416



ltes P, in tbe case where d > II. is,5

C)~ i Ut(-,I ikp (r. r3 )g a

wl-ere the inlegratlioa is over the surface preceding lens a. We make use

of the fofloiming to reduce (4) to specific form:

1) The pbase shift suffered by any ray in traversing the. distance d, in a

cylindricaHy symetric system, in the Fresnel appr-ximation, is

ko Tf(Týr) 12 (r co 4'- if Cos 4)2 1ý (esn rzin4)

2d2

Z) Tk.e phase shift associated with traversing lens n is,

L LE
1  ~kr' Z

S- r < r
b

(6)

ko_(r') k (d rb -Y > r

"4bere ce mnt be adijusted so that

* I
z 2r r 2 '~rr

-" = c i - - - o r1 =- j

b b rbb

31f To h, rm ani in.tegral equation, we let U n(;) y u (r) where y is a0n+I U

complex nu.mrber that absorbs all uni-modual phase factors like e a.and i.
17-5.



i is reltted le .hc diffraction lozs of the lero system per lens tratuit,

4) e stip~cate :hat we are only interested ini modes tMat are itdepepdent of

T. Thi'. perinit2 9s to do Mhe ' inze&ration with the usual Besse' function as

the res u t.

Equation (4) becc-mes the iotegral equation,

r|0 W 1 l+2Zdb')r'2

-- u(r') e J- rr

ivr2 2+ ikd I• o-3 •L• r (I - Zd/b) r ' k
d 1 U(r} e -T - rrr') dr'

"rI r

where J 'is the zerot% order Bessel function. For convenience we reduce
0

(7) t--- .ortn-.fized form. Letting x = -- , we obtain,

yu(x) = Z'Pr,1 { qu()-o, (,ZNlxy)e is1N[x 2+ (1+Zd/b')y Iydy

2I (;N0 -'T inNL b. " J'
+ e uy)Jo (lZiNxy)e L ( b " Y1Yj

q

r r 0

vlhcre - -- - = and NO ani NI - are the FresntelrI 1 J 4 1 " ). d

nu-,nepe-rs oz the irrner and cuter mirrors, respective,.y.

Irn ter-rns of kernels, (8) is .

-6-



j - - Kj (x,( ) u(y)dy, K, x,3} u(Y) ay) d

q

whet-e

K bx,y) = ,u or (Z,,bwy)e ()

0o

2 Id
1-,(21,cy) ZwNlaro(2nlqixy's e Y

IW. Method. o Solraion

"W!e eolve the integral equation (9) by approximating the integrals on

the --igIe~tind sidc a4 tbe equation by Legrendre-Gauss quadrature. _There,

I we rcpresent the Cirst integral by a sum oi M terms and the aecond integral

byv a sa-ur of N tern-s. In erdej to use this type of qtiadrature, we must

transform the ranges of integratier, of both ir.egrals to (-1, 1). The details

sr-r rather tedikus and w'.itl ot be presented here. The integral equation

'9) is thereby reolaced by the set of algebraic equations,

M.N
yu(":C) -- Fj (K ,xj B; ux.) + K. (x.,x.) B. u(x.) (11)

-•herc I(-::.; .: the complex amplitude at unequally spaced mtirror positiowfJ

-.. The x. ,are releted to the zeros of the Legendre polynomials PM (x and
"7

P (xW, and B. are :abuiated weight functions. Equation (11) is equiivalent
N

to the niatrix eq'aation, 19

-7-
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where K is an OM WV) x (14+) complex Matrix Vh-aisc elements are

K I (is VB. for < M

jKz(Xx.xB. for > M

ard the vector a is the complex amplitude evaluated at the various x.. The

rw.acris elI.nents are casiiy generated on ccemputer and we then use the IBM

SHARE s;broutine ALLMAT to firA the eigenvalues and rigtt eigeuveciors

1f the nhxt C.. The right eigenvectors are then tie %igenmodes of- the

cavity.

A.s a check or the mathematical formulatioa and the computer

progr3..-•, we lare plotted the results of the speciai cases of plane parallel

(d/b = dlb' - 0) and ccnfocal (d/b r 1, d/b' = -1) re3onators and compared

the; n-ith tht: results of the wave launching n'emhod of Fox and Li in

vFigu're 3. "Eviden.ly. thu agreement with the old results is quite good

azed r.e !n:; 1 beiie-e .he results for all reasonable values of d/b and d/b'.

V. Rezults and Discussion

Having cot.vir.zed ourselves that the cornmuter progamrn works for

wicie"!V tar.ed d 'b and d/b', we can rio%- proceed to investigate the behavior

cf th mrirror Amrrpl;tude distributic-zs as a function -'f d/b and d/b'. In

.i. figar- 3 ;' ho "2 shown only the arnplitude distributions, but the phase
nistribhtions ciniparc equally well.

-8-
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order to get some qaalitative feel for how we expect the distribudiow- to

depend on -:e parameters, itis necessary to solve (8j in some appromafte

sere. Wnfortr-.'.lyV, not 061•1 is t&e integral eq•ation (8) composed of two

parts, t.-e .wrts are nca-hermitian, noan-symetric and nmn-degenerate.

Forthermore, since we are interested in large as west as small Fresuel

rmbers, it is peintlt s to expand J (ZunIlxy) in a power series in its

argwraent (the uauzl ttick for obtaining a degeneratt kemel.). We have

spe-et crnsside-rab!, tme trying to cbi.zin any kind of- appw•.mante anaiyfical

solution 1- (8) and hi-ve bee-en unsuccessful. Therefore, any qualitative feel

for hon :he distribuv:-ms will depend cc the parameters is completely

-missing and we rnust proceed on a trial and error basis. Hence, it will be

rathe- diffi:ult to expeai, a logical progression to the desired results, and

we will only ;e able to indicate how we obtained the results and hope to

show .hei;i apparent importance. We begin with low Fres---l number.

A. Low Frebnel Nur, rzer

Lt. Fi&Lre 4 we show a series of mirror amplitude distriiutionz- fo:

h-1 = Z ajd NO = .25. (The intersection of the intrerior and ezterior mirrors

is indicated b- Lthe has'h marks on the abscissas on all of the remaining

fig-ces. The ciffraction lo's of the lowest loss niude is L and that of the

eext lswe;•.e .less node is occasionally listed in parenthesis. ) Thbi resonator

ie 3•.Tvh.tej-; of cor'for-l-t-pe with an interior spherical hump. We held the

"c=n•foc.! paxrr:et.r-' dlb constant at . Z and steadily Increase d/b' to forcc

rr•.re of Lte energy to thE onuLside of the rezonatoi. The procedure seems

to be w v,ox kinig relaLively well until an interior zero in the arnplit,.de distjibution

-9r Z



bft--izs to form and ax dlb' 4. the distsibution becomes quite urtaccertable.

To remedy !Ms situation, we went to the unstable-type resomator

with --ims showa in Figure 5 for NI = Z., NO = 1.5. Here, the first attempt

yiel~ed an acceptable solutiou but the diffraction Ioes was rather bhgh (25%!

lpass). Therefore, we increased d/b (man-de the rims more curved) to try

t• decrease the d-iffraction loss. At dlb = .4, dlb' I we find a rather

sc.:eptable solution with a loss of 17% per pass. It ie in, eresting to vote

that te amplitude ripples are of higher frequency and of lower amplitude

' or NO l 141 (unstable with rims) a - cf lower frec1ency and higher a_-npl6-

tude for NIO << NI (co-focal with inte.-.or bumps). The unstable with r-ims

ar#, therefore of more interest to us beca-_.se large amplitudc variations

across th( mirror will undoubtedly cause zeros and the distribution will not

cat-ssfv Llz basic criterion (3). On the other haud, rapid amplitude variations

2 acceplab.eý pro-vid.-d they are of low rncda,-ation.

The phase distributions in either case did not change appreciably

fvcni run to run so wev have plotted only a typical phase distribution in the

lower right hI-uzi com.ers of Fig~sres 4 and 5. Neither phase distribution

varier apreciably over the en:_re mirror surface, but we do note that the

pbase ia-c.s mo•re rapidly near the origin for NO Ni.

B. Mcdii:r- Fre.inel Nwt-.ber

We found cimilar Ilehavior for NI = 4. as for NI 2. Namely, it
P.4

vas eas;er to find accep'-able distri.butions for NO NI, shown in the left

colur•n of figure 7, ratber tlan for 10 << NI, shown in Figure 6. We

also lound thaL for NG and N I integer, the amplitude distributiom could

-10 -



-ave rather abrupt change. for small c•auges in d/b or dlb'. We feel that

this hig& ensitivity to dib and dib' is pro-ably due to the fact that for small

dIb' the exponentia!s

and 2d %l 2

k b

iC

in •-e kert'els in equation (8) oscillate over ver-y nearly an integral number

o! half cycles over the ranges (O.q) and (q, 1). We therefore felt that we

Swould have nmore zuccess for NO and NI not integers and this is borne out

by de~ aistribidons shown in the right hand column of Figure 7. We feel

tbha the second distribution in this column -%ill be successful in suppressing

highcr order transverse modes at this Fresnel number. Note that the

diffraction loss is only 4. 5% per pass.

C. H•g•er Fresnel Number

In Figure 8 we have plotted the amplitude distributions for rather

high. Fresnel number, and we feel that the distribution at the bottom of the

left colwn-n will be sucCessful in suppressing higher order modes. Here,

the distributions become very sensitive to changes in di b and d/b' and for

typiczdi iasers -a favorable distribution would probably require that the

rnir crs have radii of curvatures in the hundri.ds of meters. We feel,

he'weer, tbat pravid3d the mirror is spherical to 2/20 Ih of a wave, that

the distribtution will be approximately the same even for large tolerarces

on the radius (1,, e., 400 or 450 meters). 23
1-I-
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VI. Conclusions

Alkhough the unstable resonators of Siegman and Arrathoon can be

sh-en to have high discrimination against higher order transverse modes,

this discrimination does not guarantee suppression of these higher modes.

Indoed, as bhown in (LLM), if the gain for a particulax mode, caused by

the presence of a strongly oscillating fundamental mode, exceeds the loss,

the higher mode will break into oscillation, independent of the relative losses

o• th- two modes. The analysis of (LLM), has provided us with a criterion

for the s-,ppression of any higher order mode by the fundam.ent•.. mode, all

gains included.UIn t.s paper, we have (1) shown that this criterion can be reduced to

a quantitative statement of the notion that one needs to spread out the mode

volum.a of the fundamental mode in order to suppress hiter order modes,

and (2) solved numerically for the low diffraction losi eigenmodes of

rirrunred unstable resonators in order that we might find the mode

m.nplitude distributions that best satisfy this criterion over the mirror

n uirac~,24

V
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FIGURE CAPTIONS

Figure 1 Unstable resonator with rims

Figure 2 Lens system that is equivalent to Y esonator shown inI Figure 1

Figur- 3 Comparison witd. 'ox and Li wave launching method for plrtne
parallel and confocal resonators.

Fox and Lixxxxxxxxx Ours

Figure 4 Mirror amplitude and phase distributions for varicus d/b,
dlb' at- low Fresnel number. Confocal-type with interior
spherical hump.

-Figure 5 Mirror amplitude and phase distributions for various d/b
and dlb' at low Fresnel number. UnsLable with rims.

Figure 6 Mirror amplitude and phase distri-)utions at medium Fresnel
number. Confocal with interior spherical humps.

Figure 7 Amplitude distributions at meditun Fresnel number for integer
an4l non-integer Fresnel numbers. Un3table resorator with
rims.

.igure 8 High Fresnel mrnber amplitude and phase distributions.
Unstable with rims.
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